
Modelica 1
Modelica - A Unified Object-
Oriented Language for System

Modeling and Simulation

Peter Fritzson, Vadim Engelson

PELAB — Programming Environment Lab
Department of Computer and Information Science

Linköping University

Sweden

http://www.ida.liu.se/~pelab/modelica

Modelica 2

x

d

e

m

Existing Modeling languages

• Block-oriented simulation languages

• Special purpose lectronic simulation programs

• Special multibody mechanical analysis tools

Problems:

• High performance is needed for simulation of comple
systems

• Better technology for reusable components is neede

• Difficult to achieve true reusability in OO-modeling

• Gap between physical structure of the system and th
model created by the tool.

• Difficult to integrate models consisting of elements fro
different domains

Modelica 3

d

The Modelica Design Effort

• A general language for design of models of physical
systems

• Multi-formalism, multi-domain

• Continuous and hybrid models

• International effort

• EUROSIM, Simulation in Europe

– EUROSIM, Technical Committee 1

– http://www.Dynasim.se/Modelica

• Industrial support

• Aim: to become a de facto standard in object oriente
modeling of physical systems

Modelica 4
EuroSim Technical Committee 1
designing Modelica

Hilding Elmqvist, Dynasim AB. (Chairman)

Francois Boudaud, Gaz de France, Paris, France

Jan Broenink, Univ. Twente, Netherlands

Dag Brück, Dynasim AB, Lund, Sweden

Thilo Ernst, GMD-First, Berlin, Germany

Peter Fritzson, Linköping Univ., Sweden

Alexandre Jeandel, Gaz de France, Paris, France

Kai Juslin, VTT, Espoo, Finland

Matthias Klose, GMD-First, Berlin, Germany

Sven-Erik Mattson, Lund Univ. Sweden

Martin Otter, DLR, Oberpfaffenhofen, Germany

Per Sahlin, Brisdata AB, Stockholm, Sweden

Hubertus Tummescheit, DLR, Cologne, Germany

Hans Vangheluwe, Univ. of Gent, Belgium

Modelica 5

ents.
ecify

tc.
in

rted
f

Modelica features

• Non-causal modeling

Based on equations instead of assignment statem
Better reuse of classes since equations does not sp
data flow direction.

• Multidomain modeling capability

Electrical, mechanical, thermodynamic, hydraulic e
Model components correspond to physical objects
real world.

• Object-orientation

OO, templates, and general subtyping are suppo
within the class construct. Supports reuse o
components and evolution of models.

Modelica 6

l is

ing

tive

s

s

/de-
Object Oriented Mathematical Modeling
with Modelica

The static declarative structure of a mathematical mode
emphasized.

OO is primarily used as a structuring concept.

OO is not viewed as dynamic object creation and send
messages.

Dynamic model properties are expressed in a declara
way through equations.

• An object is collection of variables, equations, function
that share a state (= instance variables).

• Classes = templates to create objects

• Inheritance = reuse of equations, functions, variable

Non-causal classes supports better reuse of modeling
sign knowledge than traditional classes

Modelica 7
Advantages of non-causal physical modeling
supported by Modelica

• Non-causal object oriented circuit model example

• Block-oriented (causal) circuit model

• Disadvantages of the causal model

– Physical topology lost

– Resistor implementation is context-dependent - reuse hard

– Difficult to maintain

Modelica 8

p-
Examples of early object oriented
modeling/design languages and tools

• Dymola, Omola

• ObjectMath

• NMF, U.L.M.

• Ascend, gProms

• SIDOPS+, Smile

Significant experience of using these in many different a
plication domains.

Modelica extends and replaces these formalisms

Modelica 9

n-
d.
Non-causal modeling/design

• What is non-causal modeling/design?

• Why does it increase re-use?

The non-causality makes Modelica library classes
more reusablethan traditional classes containing assig
ment statements where the input-output causality is fixe

• Example: a resistor equation:
 R*i = v;

can be used in two ways:

 i := v/R;

 v := R*i;

Modelica 10

s

ns

ype

L

Modelica Semantics

Modelica is truly equation-based:

• Assignment statements are represented as equation

• Connections between objects generate equations

• Attribute assignments can be represented as equatio

The semantics rules describe definition expansion, t
structures, etc.

A formal definition of Modelica semantics specified inNat-
ural Semanticsis being developed by us using the RM
tool (http://www.ida.liu.se/~pelab/rml).

Modelica 11
Object/Component connection diagrams

• Every rectangle represents aphysical component, e.g.
resistor, mechanical gear, pump.

• The connections corresponds to the real,physical
connections. For example:
electrical wire, stiff mechanical connections, heat
exchange between components.

• Variables at theinterface points define the interaction
between objects.

• A component is modeledindependently of the
environment. That is, for the definition of the
component onlyinterface variablesandlocal variables
are used!

• A component consists ofother connected components
(hierarchical modeling), or is described byequations.

Component 1 Component 2

Component 3

Modelica 12

s:
Simplified example car model in Modelica
using a connection diagram

class Car "Abstract class to connect subclasses"
 Wheel w1,w2,w3,w4 "Four wheels";
 Chassis chassis "Chassis";
 CarController controller "Car controller"; ...

• Visualization using the Vega tool on Silicon Graphic

Controller

Front wheels Rear wheels

Chassis

Object connections

Modelica 13

nts

+

Circuit example — a Modelica model

 class circuit
 Resistor R1(R=10);
 Capacitor C(C=0.01);
 Resistor R2(R=100);
 Inductor L(L=0.1);
 VsourceAC AC;
 Ground G;

 equation
connect (AC.p, R1.p); // 1, Capacitor circuit

 connect (R1.n, C.p); // Wire 2
 connect (C.n, AC.n); // Wire 3

connect (R1.p, R2.p); // 2, Inductor circuit
 connect (R2.n, L.p); // Wire 5
 connect (L.n, C.n); // Wire 6
 connect (AC.n, G.p); // 7, Ground
 end circuit;

R1

u (t)

C

R2

L AC

G

N1

N2

N3N4

+
+

+
+

+

1

2

3

4

5

6
7

Legend
AC, R1, R2, L, C, G - compone
N1-N4 - nodes
1-7 - wires
 - positive pins

u (t) = VA sin(2π f t)
(alternate voltage source)

Modelica 14

ical

to
Component details

• Type definitions

 type Voltage = Real(Unit ="V");
 type Current = Real(Unit ="A");

– Good tools will supportunit checking of equations

• Connectors specify external interfaces for interaction

Pin is a connector class that can be used for electr
components which have pins

 connector Pin
 Voltage v;

flow Current i ;
 end;

The keyword flow indicates that all currents in
connected pins are summed to zero, according
Kirchoff’s 2:nd law

+

i

v

Modelica 15
Connecting components

• Example

Connecting two components which have pins:

• Equations produced by the connection:

 Pin1. v = Pin2. v

 Pin1. i + Pin2. i = 0

+

i

v Pin2
+

i

vPin1

Modelica 16
Describing common properties by classes

• TwoPin — electrical components with two pins

partial class TwoPin
"Superclass of elements with two electrical pins"

 Pin p, n;
 Voltage v;
 Current i ;

equation
v = p.v - n.v ;
p.i + n.i = 0;
i = p.i ;

end;

+

p.i n.ii

v
p n

n.vp.v

Modelica 17
Component classes

• Resistor

class Resistor "Ideal electrical resistor"
 extends TwoPin ;
parameter Real R(Unit="Ohm") "Resistance";

equation
R* i = v;

end;

• Capacitor

class Capacitor "Ideal electrical capacitor"
 extends TwoPin ;
 parameter Real C(Unit="F") "Capacitance";

equation
C*der(v) = i ;

end;

Rp n+
i v

+

C
p n

v
i

Modelica 18
Examples of simple electrical components

0 = p.i + n.i

u = p.v - n.v

i = p.i

u = R*i

0 = p.i + n.i

u = p.v - n.v

i = p.i

i = C*der(u)

0 = p.i + n.i

u = p.v - n.v

i = p.i

u = L*der(i)

0 = p.i + n.i

u = p.v - n.v

i = p.i

u = A*sin(w*t)

 v = 0

p.i n.i

p.v n.v
u

+

p.i n.i

p.v n.v
u

+

p.i n.i

p.v n.v
u

+

p.i n.i

p.v n.v

u(t)

+

iv

Modelica 19

C

R

R

C

Equations from the simple circuit

Table 1:

0=AC.p.i+Ac.n.i

AC.v=Ac.p.v-AC.n.v

AC.i=AC.p.i

AC.v=AC.VA*

sin(2*PI*AC.f*time);

L 0=L.p.i+L.n.i

L.v=L.p.v-L.n.v

L.i=L.p.i

L.v = L.L*L.der(i)

1 0=R1.p.i+R1.n.i

R1.v=R1.p.v-R1.n.v

R1.i=R1.p.i

R1.v = R1.R*R1.i

G G.p.v = 0

2 0=R2.p.i+R2.n.i

R2.v=R2.p.v-R2.n.v

R2.i=R2.p.i

R2.v = R2.R*R2.i

wires R1.p.v=AC.p.v // wire 1

C.p.v=R1.n.v // wire 2

AC.n.v=C.n.v // wire 3

R2.p.v=R1.p.v // wire 4

L.p.v=R2.n.v // wire 5

L.n.v=C.n.v // wire 6

G.p.v= AC.n.v // wire 7

0=C.p.i+C.n.i

C.v=C.p.v-C.n.v

C.i=C.p.i

C.i = C.C*C.der(v)

flow
at

nodes

0=AC.p.i+R1.p.i+R2.p.i //1

0=C.n.i+G.i+AC.n.i+L.n.i //2

0=R1.n.i+ C.p.i // 3

0 =R2.n.i + L.p.i // 4

R1

u (t)

C

R2

L
AC

G

N1

N2

N3
N4

+
+

+

+
+

1

2

3

4

5

6

7

+

Modelica 20

d

Sought: Transformation to state space form

That is,
from a given statex, the derivative of the state, , shoul
be calculated.

Here:

given: C.u, L.i, t (constants: R1.R, R2.R, C.C, L.L, A.A, A.w)

sought: der(C.u), der(L.i)

Here are the 31 unknowns

R1.p.i, R1.n.i, R1.p.v, R1.n.v, R1.u,
R2.p.i, R2.n.i, R2.p.v, R2.n.v, R2.u,
C.p.i, C.n.i, C.p.v, C.n.v, der(C.u),

der(L.i), L.n.i, L.p.v, L.n.v, L.u,
A.p.i, A.n.i, A.p.v, A.n.v, A.u,
g.i, g.v R1.i R2.i L.i

C.i

ẋ f x t,()=

ẋ

Modelica 21

u

the
Solution method

1. Use the equations that contains the unknowns yo
want to calculate (here:der(C.u), der(L.i))

der(C.u) = C.p.i/C.C

der(L.p.i) = L.u/L.L

2. Use other equations to calculate the unknowns in
equations from 1.
 C.p.i = R1.u/R1.R

 R1.u = R1.p.v - C.u

 R1.p.v =A.A*sin(A.w* t)

 L.u = R1.p.v - R2.u

 R2.u = R2.R*L.p.i

3. Sort the equations in dependency order
 given: C.u, L.p.i, t

 R2.u =R2.R*L.p.i
 R1.p.v =A.A*sin(A.w* t)
 L.u = R1.p.v - R2.u

R1.u =R1.p.v - C.u
 C.p.i = R1.u/R1.R
 der(L.p.i) = L.u/L.L
 der(C.u) = C.p.i/C.C

4. Generate code and solve numerically

Modelica 22

ns

.

Automated solution method

• Equations are sorted, symbolically simplified, and
translated to efficient C/C++ code

• This method is completely automated and handles te
of thousands of equations efficiently

• Currently primarily for Differential-algebraic equations
Ongoing work for partial differential equations

Modelica 23
Time in Modelica

The behaviour evolves as a function of time.
A predefined variabletime is used:

class VsourceAC “Sin-wave voltage source”
 extends TwoPin;
 parameter Voltage VA = 220 “Amplitude”;

parameter Real f(unit=”Hz”) = 50
 “Frequency”;
 constant Real PI=3.141592653589793;
equation
 v = VA*sin(2*PI*f*time);
end VsourceAC;

The constructder(v) means the time derivative ofv.

Modelica 24

ssed
Functions in Modelica

Sometimes there is need for model components expre
in algorithmically

function PolynomialEvaluator
 input Real a[:];
 // array, size defined at run time
 input Real x;
 output Real y;
 protected
 Real xpower;
 algorithm
 y := 0;
 xpower := 1;
 for i in 1:size(a, 1) loop
 y := y + a[i]*xpower;
 xpower := xpower*x;
 end for;
 end PolynomialEvaluator;

Functions have input parameters and output results.

Modelica 25

f

ss is
Subtypes in Modelica

According to several type systems by Abadi & Cardelli:

Class A is a subtype of class B iff

• Class A contains all public variables of B

• The types of these variables are subtypes of types o
corresponding variables in B.

Where is subtyping used?

• Initialization of variables: variable A can be initialized
by B

• Redeclarations (discussed later)

Redeclarations

The type of class member can be changed when the cla
inherited.

Modelica 26
Redeclaration example in Modelica

Two classes, Resistor and TempResistor:

class Resistor “Ideal electrical resistor”
 extends TwoPin;
 parameter Real R(unit=”Ohm”) “Resistance”;
 equation
 R*i = v;
end Resistor;

class TempResistor
 extends TwoPin
 parameter Real R, RT, Tref ;
 Real T;
 equation
 v=i*(R+RT*(T-Tref));
end TempResistor

Note thatTempResistor is a subtype ofResistor.

Modelica 27
Redeclaration example (continued.)

There is a class SimpleCircuit:

class SimpleCircuit
 Resistor R1(R=100), R2(R=200), R3(R=300);
 equation
 connect(R1.p, R2.p);
 connect(R1.p, R3.p);
end SimpleCircuit;

The types of variables R1 and R2 can be replaced:

class RefinedSimpleCircuit = SimpleCircuit(
 redeclare TempResistor R1,
 redeclare TempResistor R2);

The result is equivalent to:

class RefinedSimpleCircuit
 TempResistor R1(R=100),
 TempResistor R2(R=200),
 Resistor R3(R=300);
 equation
 connect(R1.p, R2.p);
 connect(R1.p, R3.p);
end RefinedSimpleCircuit

Modelica 28

s-
Comparison of redeclaration with C++
templates

In C++ classes can be defined as below:

template <class TResistor, class TResistor1>
class SimpleCircuit {
 public:
SimpleCircuit(){
 R1.R=100.0;
 R2.R=200.0;

R3.R=300.0; };
TResistor R1;
TResistor1 R2;
Resistor R3;
}

and then declared by

SimpleCircuit<TempResistor,TempResistor>

In C++ it is necessary to explicitly specify which two resi
tors are replaced.

Modelica 29
Redeclaration in Java

Assume that:

classTempResistor extendsResistor

and

classRefinedSimpleCircuit extendsSimpleCircuit

then the problem is solved at run-time:

class RefinedSimpleCircuit extends
 SimpleCircuit
{ public
 RefinedSimpleCircuit() {
 R1=new TempResistor();
 R2=new TempResistor();
}}

Modelica 30
Java - usingObject .

Otherwise, the problem is solved by using casting:

class SimpleCircuit
{ public SimpleCircuit() {
 R1=new Resistor(); ((Resistor)R1).R=100.0;
 R2=new Resistor(); ((Resistor)R2).R=200.0;
 R3=new Resistor(); ((Resistor)R3).R=300.0;};
 Object R1, R2, R3;
 };
};

class RefinedSimpleCircuit extends SimpleCircuit
{ public
 RefinedSimpleCircuit() {
 R1=new TempResistor();
 R2=new TempResistor();
 ((TempResistor)R1).RT=0.1;
 ((TempResistor)R1).TRef=20.0;}
};

Modelica 31

s

Advanced Modelica Modeling Features

• matrix equations

– for mechanical models, control systems, etc.

• arrays of components and regular connection pattern

– such as a distillation column

• class parameters

– reuse of a model diagram but replacing component models

• discontinuities, events and event synchronization

– for modeling friction, sampled control systems, etc.

• algorithms and functions

– for procedural style of modeling/design

• units and quantities

– for consistency checks

• graphical annotations

– also icons and model diagrams become portable

• Modelica base library

– standard variable and connector types promotes reuse

Modelica 32
Plans

• The aim is to make Modelica a de-facto standard

• Modelica version 1.0

– Differential Algebraic Equations (DAE)

– Hybrid models

– Published September 1997
(www.dynasim.se/Modelica)

• Modelica version 1.1

– Semantics formally defined

– Standard libraries

– Expected Sept.-Oct 1998

• Modelica version 2

– Support for partial differential equations

– Mathematical modeling of dynamic object creation, etc.

• Planned books

– Modelica language

– Modelica libraries

• Tools, ...

Modelica 33

or

r

ext

ry

m

Conclusion

• Modelica is a new object-oriented design language f
modeling/design of complex systems, usually for the
purpose of simulation

• An international technical committee, currently unde
EuroSim, is standardizing and designing Modelica

• The language has a good chance of becoming the n
generation simulation language

• Modelica is strongly typed and can be compiled to ve
efficient C/C++ code

• Ongoing efforts to generate efficient parallel code fro
Modelica

	Modelica - A Unified Object- Oriented Language for System Modeling and Simulation
	Peter Fritzson, Vadim Engelson
	PELAB — Programming Environment Lab
	Department of Computer and Information Science
	Linköping University
	Sweden
	http://www.ida.liu.se/~pelab/modelica

	Existing Modeling languages
	• Block-oriented simulation languages
	• Special purpose lectronic simulation programs
	• Special multibody mechanical analysis tools
	Problems:
	• High performance is needed for simulation of complex systems
	• Better technology for reusable components is needed
	• Difficult to achieve true reusability in OO-modeling
	• Gap between physical structure of the system and the model created by the tool.
	• Difficult to integrate models consisting of elements from different domains

	The Modelica Design Effort
	• A general language for design of models of physical systems
	• Multi-formalism, multi-domain
	• Continuous and hybrid models
	• International effort
	• EUROSIM, Simulation in Europe
	– EUROSIM, Technical Committee 1
	– http://www.Dynasim.se/Modelica

	• Industrial support
	• Aim: to become a de facto standard in object oriented modeling of physical systems

	EuroSim Technical Committee 1 designing Modelica
	Hilding Elmqvist, Dynasim AB. (Chairman)
	Francois Boudaud, Gaz de France, Paris, France
	Jan Broenink, Univ. Twente, Netherlands
	Dag Brück, Dynasim AB, Lund, Sweden
	Thilo Ernst, GMD-First, Berlin, Germany
	Peter Fritzson, Linköping Univ., Sweden
	Alexandre Jeandel, Gaz de France, Paris, France
	Kai Juslin, VTT, Espoo, Finland
	Matthias Klose, GMD-First, Berlin, Germany
	Sven-Erik Mattson, Lund Univ. Sweden
	Martin Otter, DLR, Oberpfaffenhofen, Germany
	Per Sahlin, Brisdata AB, Stockholm, Sweden
	Hubertus Tummescheit, DLR, Cologne, Germany
	Hans Vangheluwe, Univ. of Gent, Belgium

	Modelica features
	• Non-causal modeling
	Based on equations instead of assignment statements. Better reuse of classes since equations does...
	• Multidomain modeling capability

	Electrical, mechanical, thermodynamic, hydraulic etc. Model components correspond to physical obj...
	• Object-orientation

	OO, templates, and general subtyping are supported within the class construct. Supports reuse of ...

	Object Oriented Mathematical Modeling with Modelica
	The static declarative structure of a mathematical model is emphasized.
	OO is primarily used as a structuring concept.
	OO is not viewed as dynamic object creation and sending messages.
	Dynamic model properties are expressed in a declarative way through equations.
	• An object is collection of variables, equations, functions that share a state (= instance varia...
	• Classes = templates to create objects
	• Inheritance = reuse of equations, functions, variables

	Non-causal classes supports better reuse of modeling/design knowledge than traditional classes
	Advantages of non-causal physical modeling supported by Modelica
	• Non-causal object oriented circuit model example
	• Block-oriented (causal) circuit model
	• Disadvantages of the causal model
	– Physical topology lost
	– Resistor implementation is context-dependent - reuse hard
	– Difficult to maintain

	Examples of early object oriented modeling/design languages and tools
	• Dymola, Omola
	• ObjectMath
	• NMF, U.L.M.
	• Ascend, gProms
	• SIDOPS+, Smile
	Significant experience of using these in many different application domains.
	Modelica extends and replaces these formalisms

	Non-causal modeling/design
	• What is non-causal modeling/design?
	• Why does it increase re-use?
	The non-causality makes Modelica library classes more reusable than traditional classes containin...
	• Example: a resistor equation:

	R*i = v;
	can be used in two ways:

	i := v/R;
	v := R*i;

	Modelica Semantics
	Modelica is truly equation-based:
	• Assignment statements are represented as equations
	• Connections between objects generate equations
	• Attribute assignments can be represented as equations

	The semantics rules describe definition expansion, type structures, etc.
	A formal definition of Modelica semantics specified in Natural Semantics is being developed by us...

	Object/Component connection diagrams
	• Every rectangle represents a physical component, e.g. resistor, mechanical gear, pump.
	• The connections corresponds to the real, physical connections. For example: electrical wire, st...
	• Variables at the interface points define the interaction between objects.
	• A component is modeled independently of the environment. That is, for the definition of the com...
	• A component consists of other connected components (hierarchical modeling), or is described by ...

	Simplified example car model in Modelica using a connection diagram
	class Car "Abstract class to connect subclasses"
	Wheel w1,w2,w3,w4 "Four wheels";
	Chassis chassis "Chassis";
	CarController controller "Car controller"; ...
	• Visualization using the Vega tool on Silicon Graphics:

	Circuit example — a Modelica model
	class circuit
	Resistor R1(R=10);
	Capacitor C(C=0.01);
	Resistor R2(R=100);
	Inductor L(L=0.1);
	VsourceAC AC;
	Ground G;
	equation
	connect (AC.p, R1.p); // 1, Capacitor circuit
	connect (R1.n, C.p); // Wire 2
	connect (C.n, AC.n); // Wire 3
	connect (R1.p, R2.p); // 2, Inductor circuit
	connect (R2.n, L.p); // Wire 5
	connect (L.n, C.n); // Wire 6
	connect (AC.n, G.p); // 7, Ground
	end circuit;

	Component details
	• Type definitions
	type Voltage = Real(Unit="V");
	type Current = Real(Unit="A");
	– Good tools will support unit checking of equations

	• Connectors specify external interfaces for interaction
	Pin is a connector class that can be used for electrical components which have pins
	connector Pin
	Voltage v;
	flow Current i;
	end;

	The keyword flow indicates that all currents in connected pins are summed to zero, according to K...

	Connecting components
	• Example
	Connecting two components which have pins:
	• Equations produced by the connection:

	Pin1.v = Pin2.v
	Pin1.i + Pin2.i = 0

	Describing common properties by classes
	• TwoPin — electrical components with two pins
	partial class TwoPin
	"Superclass of elements with two electrical pins"
	Pin p, n;

	Voltage v;
	Current i;
	equation
	v = p.v - n.v;
	p.i + n.i = 0;
	i = p.i;
	end;

	Component classes
	• Resistor
	class Resistor "Ideal electrical resistor"
	extends TwoPin;
	parameter Real R(Unit="Ohm") "Resistance";
	equation
	R*i = v;
	end;

	• Capacitor
	class Capacitor "Ideal electrical capacitor"
	extends TwoPin;
	parameter Real C(Unit="F") "Capacitance";
	equation
	C*der(v) = i;
	end;

	Examples of simple electrical components
	0 = p.i + n.i
	u = p.v - n.v
	i = p.i
	u = R*i
	0 = p.i + n.i
	u = p.v - n.v
	i = p.i
	i = C*der(u)
	0 = p.i + n.i
	u = p.v - n.v
	i = p.i
	u = L*der(i)
	0 = p.i + n.i
	u = p.v - n.v
	i = p.i
	u = A*sin(w*t)

	Equations from the simple circuit
	Sought: Transformation to state space form
	Solution method
	Automated solution method
	• Equations are sorted, symbolically simplified, and translated to efficient C/C++ code
	• This method is completely automated and handles tens of thousands of equations efficiently
	• Currently primarily for Differential-algebraic equations. Ongoing work for partial differential...

	Time in Modelica
	The behaviour evolves as a function of time. A predefined variable time is used:
	class VsourceAC “Sin-wave voltage source”
	extends TwoPin;
	parameter Voltage VA = 220 “Amplitude”;
	parameter Real f(unit=”Hz”) = 50
	“Frequency”;
	constant Real PI=3.141592653589793;
	equation
	v = VA*sin(2*PI*f*time);
	end VsourceAC;

	The construct der(v) means the time derivative of v.

	Functions in Modelica
	Sometimes there is need for model components expressed in algorithmically
	function PolynomialEvaluator
	input Real a[:];
	// array, size defined at run time
	input Real x;
	output Real y;
	protected
	Real xpower;
	algorithm
	y := 0;
	xpower := 1;
	for i in 1:size(a, 1) loop
	y := y + a[i]*xpower;
	xpower := xpower*x;
	end for;
	end PolynomialEvaluator;

	Functions have input parameters and output results.

	Subtypes in Modelica
	According to several type systems by Abadi & Cardelli:
	Class A is a subtype of class B iff
	• Class A contains all public variables of B
	• The types of these variables are subtypes of types of corresponding variables in B.

	Where is subtyping used?
	• Initialization of variables: variable A can be initialized by B
	• Redeclarations (discussed later)

	Redeclarations
	The type of class member can be changed when the class is inherited.

	Redeclaration example in Modelica
	Two classes, Resistor and TempResistor:
	class Resistor “Ideal electrical resistor”
	extends TwoPin;
	parameter Real R(unit=”Ohm”) “Resistance”;
	equation
	R*i = v;
	end Resistor;
	class TempResistor

	extends TwoPin
	parameter Real R, RT, Tref ;
	Real T;
	equation
	v=i*(R+RT*(T-Tref));
	end TempResistor

	Note that TempResistor is a subtype of Resistor.

	Redeclaration example (continued.)
	There is a class SimpleCircuit:
	class SimpleCircuit
	Resistor R1(R=100), R2(R=200), R3(R=300);
	equation
	connect(R1.p, R2.p);
	connect(R1.p, R3.p);
	end SimpleCircuit;

	The types of variables R1 and R2 can be replaced:
	class RefinedSimpleCircuit = SimpleCircuit(
	redeclare TempResistor R1,
	redeclare TempResistor R2);

	The result is equivalent to:
	class RefinedSimpleCircuit
	TempResistor R1(R=100),
	TempResistor R2(R=200),
	Resistor R3(R=300);
	equation
	connect(R1.p, R2.p);
	connect(R1.p, R3.p);
	end RefinedSimpleCircuit

	Comparison of redeclaration with C++ templates
	In C++ classes can be defined as below:
	template <class TResistor, class TResistor1>
	class SimpleCircuit {
	public:
	SimpleCircuit(){
	R1.R=100.0;
	R2.R=200.0;
	R3.R=300.0; };
	TResistor R1;
	TResistor1 R2;
	Resistor R3;
	}

	and then declared by
	SimpleCircuit<TempResistor,TempResistor>

	In C++ it is necessary to explicitly specify which two resistors are replaced.

	Redeclaration in Java
	Assume that:
	class TempResistor extends Resistor
	and
	class RefinedSimpleCircuit extends SimpleCircuit
	then the problem is solved at run-time:
	class RefinedSimpleCircuit extends
	SimpleCircuit
	{ public
	RefinedSimpleCircuit() {
	R1=new TempResistor();
	R2=new TempResistor();
	}}

	Java - using Object.
	Otherwise, the problem is solved by using casting:
	class SimpleCircuit
	{ public SimpleCircuit() {
	R1=new Resistor(); ((Resistor)R1).R=100.0;
	R2=new Resistor(); ((Resistor)R2).R=200.0;
	R3=new Resistor(); ((Resistor)R3).R=300.0;};
	Object R1, R2, R3;
	};
	};
	class RefinedSimpleCircuit extends SimpleCircuit
	{ public
	RefinedSimpleCircuit() {
	R1=new TempResistor();
	R2=new TempResistor();
	((TempResistor)R1).RT=0.1;
	((TempResistor)R1).TRef=20.0;}
	};

	Advanced Modelica Modeling Features
	• matrix equations
	– for mechanical models, control systems, etc.

	• arrays of components and regular connection patterns
	– such as a distillation column

	• class parameters
	– reuse of a model diagram but replacing component models

	• discontinuities, events and event synchronization
	– for modeling friction, sampled control systems, etc.

	• algorithms and functions
	– for procedural style of modeling/design

	• units and quantities
	– for consistency checks

	• graphical annotations
	– also icons and model diagrams become portable

	• Modelica base library
	– standard variable and connector types promotes reuse

	Plans
	• The aim is to make Modelica a de-facto standard
	• Modelica version 1.0
	– Differential Algebraic Equations (DAE)
	– Hybrid models
	– Published September 1997 (www.dynasim.se/Modelica)

	• Modelica version 1.1
	– Semantics formally defined
	– Standard libraries
	– Expected Sept.-Oct 1998

	• Modelica version 2
	– Support for partial differential equations
	– Mathematical modeling of dynamic object creation, etc.

	• Planned books
	– Modelica language
	– Modelica libraries

	• Tools, ...

	Conclusion
	• Modelica is a new object-oriented design language for modeling/design of complex systems, usual...
	• An international technical committee, currently under EuroSim, is standardizing and designing M...
	• The language has a good chance of becoming the next generation simulation language
	• Modelica is strongly typed and can be compiled to very efficient C/C++ code
	• Ongoing efforts to generate efficient parallel code from Modelica

