
Modelica 1
Modelica - A Unified Object-
Oriented Language for System

Modeling and Simulation

Peter Fritzson, Vadim Engelson

PELAB — Programming Environment Lab
Department of Computer and Information Science

Linköping University

Sweden

http://www.ida.liu.se/~pelab/modelica



Modelica 2

x

d

e

m

Existing Modeling languages

• Block-oriented simulation languages

• Special purpose lectronic simulation programs

• Special multibody mechanical analysis tools

Problems:

• High performance is needed for simulation of comple
systems

• Better technology for reusable components is neede

• Difficult to achieve true reusability in OO-modeling

• Gap between physical structure of the system and th
model created by the tool.

• Difficult to integrate models consisting of elements fro
different domains
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The Modelica Design Effort

• A general language for design of models of physical
systems

• Multi-formalism, multi-domain

• Continuous and hybrid models

• International effort

• EUROSIM, Simulation in Europe

– EUROSIM, Technical Committee 1

– http://www.Dynasim.se/Modelica

• Industrial support

• Aim: to become a de facto standard in object oriente
modeling of physical systems



Modelica 4
EuroSim Technical Committee 1
designing Modelica

Hilding Elmqvist, Dynasim AB. (Chairman)

Francois Boudaud, Gaz de France, Paris, France

Jan Broenink, Univ. Twente, Netherlands

Dag Brück, Dynasim AB, Lund, Sweden

Thilo Ernst, GMD-First, Berlin, Germany

Peter Fritzson, Linköping Univ., Sweden

Alexandre Jeandel, Gaz de France, Paris, France

Kai Juslin, VTT, Espoo, Finland

Matthias Klose, GMD-First, Berlin, Germany

Sven-Erik Mattson, Lund Univ. Sweden

Martin Otter, DLR, Oberpfaffenhofen, Germany

Per Sahlin, Brisdata AB, Stockholm, Sweden

Hubertus Tummescheit, DLR, Cologne, Germany

Hans Vangheluwe, Univ. of Gent, Belgium



Modelica 5

ents.
ecify

tc.
in

rted
f

Modelica features

• Non-causal modeling

Based on equations instead of assignment statem
Better reuse of classes since equations does not sp
data flow direction.

• Multidomain modeling capability

Electrical, mechanical, thermodynamic, hydraulic e
Model components correspond to physical objects
real world.

• Object-orientation

OO, templates, and general subtyping are suppo
within the class construct. Supports reuse o
components and evolution of models.
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Object Oriented Mathematical Modeling
with Modelica

The static declarative structure of a mathematical mode
emphasized.

OO is primarily used as a structuring concept.

OO is not viewed as dynamic object creation and send
messages.

Dynamic model properties are expressed in a declara
way through equations.

• An object is collection of variables, equations, function
that share a state (= instance variables).

• Classes = templates to create objects

• Inheritance = reuse of equations, functions, variable

Non-causal classes supports better reuse of modeling
sign knowledge than traditional classes
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Advantages of non-causal physical modeling
supported by Modelica

• Non-causal object oriented circuit model example

• Block-oriented (causal) circuit model

• Disadvantages of the causal model

– Physical topology lost

– Resistor implementation is context-dependent - reuse hard

– Difficult to maintain
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Examples of early object oriented
modeling/design languages and tools

• Dymola, Omola

• ObjectMath

• NMF, U.L.M.

• Ascend, gProms

• SIDOPS+, Smile

Significant experience of using these in many different a
plication domains.

Modelica extends and replaces these formalisms
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Non-causal modeling/design

• What is non-causal modeling/design?

• Why does it increase re-use?

The non-causality makes Modelica library classes
more reusablethan traditional classes containing assig
ment statements where the input-output causality is fixe

• Example: a resistor equation:
     R*i = v;

can be used in two ways:

     i := v/R;

     v := R*i;
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Modelica Semantics

Modelica is truly equation-based:

• Assignment statements are represented as equation

• Connections between objects generate equations

• Attribute assignments can be represented as equatio

The semantics rules describe definition expansion, t
structures, etc.

A formal definition of Modelica semantics specified inNat-
ural Semanticsis being developed by us using the RM
tool (http://www.ida.liu.se/~pelab/rml).
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Object/Component connection diagrams

• Every rectangle represents aphysical component, e.g.
resistor, mechanical gear, pump.

• The connections corresponds to the real,physical
connections. For example:
electrical wire, stiff mechanical connections, heat
exchange between components.

• Variables at theinterface points define the interaction
between objects.

• A component is modeledindependently of the
environment. That is, for the definition of the
component onlyinterface variablesandlocal variables
are used!

• A component consists ofother connected components
(hierarchical modeling), or is described byequations.

Component 1 Component 2

Component 3
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Simplified example car model in Modelica
using a connection diagram

class Car "Abstract class to connect subclasses"
  Wheel          w1,w2,w3,w4  "Four wheels";
  Chassis        chassis      "Chassis";
  CarController  controller   "Car controller"; ...

• Visualization using the Vega tool on Silicon Graphic

Controller

Front wheels Rear wheels

Chassis

Object connections
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Circuit example — a Modelica model

   class circuit
      Resistor  R1(R=10);
      Capacitor C(C=0.01);
      Resistor  R2(R=100);
      Inductor  L(L=0.1);
      VsourceAC AC;
      Ground    G;

    equation
connect (AC.p, R1.p); // 1, Capacitor circuit

      connect (R1.n, C.p);     //     Wire 2
      connect (C.n, AC.n);     //     Wire 3

connect (R1.p, R2.p); // 2, Inductor circuit
      connect (R2.n, L.p);     //     Wire 5
      connect (L.n,  C.n);     //     Wire 6
      connect (AC.n, G.p);     // 7, Ground
    end circuit;

R1

u (t)

C

R2

L AC

G

N1

N2

N3N4

+
+

+
+

+

1

2

3

4

5

6
7

Legend
AC, R1, R2, L, C, G - compone
N1-N4 - nodes
1-7 - wires
 - positive pins

u (t) = VA sin(2π f t)
(alternate voltage source)
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Component details

• Type definitions

      type Voltage = Real( Unit ="V");
      type Current = Real( Unit ="A");

– Good tools will supportunit  checking of equations

• Connectors specify external interfaces for interaction

Pin is a connector class that can be used for electr
components which have pins

      connector Pin
        Voltage v;

flow  Current i ;
      end;

The keyword flow indicates that all currents in
connected pins are summed to zero, according
Kirchoff’s 2:nd law

+

i

v
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Connecting components

• Example

Connecting two components which have pins:

• Equations produced by the connection:

   Pin1. v = Pin2. v

   Pin1. i  + Pin2. i  = 0

+

i

v Pin2
+

i

vPin1
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Describing common properties by classes

• TwoPin — electrical components with two pins

partial class TwoPin
"Superclass of elements with two electrical pins"

  Pin      p, n;
  Voltage v;
  Current i ;

equation
v = p.v  - n.v ;
p.i  + n.i  = 0;
i  = p.i ;

end;

+

p.i n.ii

v
p n

n.vp.v
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Component classes

• Resistor

class Resistor "Ideal electrical resistor"
  extends TwoPin ;
parameter Real R(Unit="Ohm") "Resistance";

equation
R* i  = v;

end;

• Capacitor

class Capacitor "Ideal electrical capacitor"
  extends TwoPin ;
  parameter Real C(Unit="F") "Capacitance";

equation
C*der( v) = i ;

end;

Rp n+
i v

+

C
p n

v
i
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Examples of simple electrical components

0 = p.i + n.i

u = p.v - n.v

i  = p.i

u = R*i

0 = p.i + n.i

u = p.v - n.v

i  =  p.i

i = C*der(u)

0 = p.i + n.i

u = p.v - n.v

i  =  p.i

u = L*der(i)

0 = p.i + n.i

u = p.v - n.v

i  =  p.i

u = A*sin(w*t)

     v = 0

p.i n.i

p.v n.v
u

+

p.i n.i

p.v n.v
u

+

p.i n.i

p.v n.v
u

+

p.i n.i

p.v n.v

u(t)

+

iv
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Equations from the simple circuit

Table 1:

0=AC.p.i+Ac.n.i

AC.v=Ac.p.v-AC.n.v

AC.i=AC.p.i

AC.v=AC.VA*

sin(2*PI*AC.f*time);

L 0=L.p.i+L.n.i

L.v=L.p.v-L.n.v

L.i=L.p.i

L.v = L.L*L.der(i)

1 0=R1.p.i+R1.n.i

R1.v=R1.p.v-R1.n.v

R1.i=R1.p.i

R1.v = R1.R*R1.i

G G.p.v = 0

2 0=R2.p.i+R2.n.i

R2.v=R2.p.v-R2.n.v

R2.i=R2.p.i

R2.v = R2.R*R2.i

wires R1.p.v=AC.p.v // wire 1

C.p.v=R1.n.v  // wire 2

AC.n.v=C.n.v  // wire 3

R2.p.v=R1.p.v // wire 4

L.p.v=R2.n.v  // wire 5

L.n.v=C.n.v   // wire 6

G.p.v= AC.n.v // wire 7

0=C.p.i+C.n.i

C.v=C.p.v-C.n.v

C.i=C.p.i

C.i = C.C*C.der(v)

flow
at

nodes

0=AC.p.i+R1.p.i+R2.p.i //1

0=C.n.i+G.i+AC.n.i+L.n.i //2

0=R1.n.i+ C.p.i //  3

0 =R2.n.i + L.p.i // 4

R1

u (t)

C

R2

L
AC

G

N1

N2

N3
N4

+
+

+

+
+

1

2

3

4

5

6

7

+
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Sought: Transformation to state space form

That is,
from a given statex, the derivative of the state, , shoul
be calculated.

Here:

given: C.u, L.i, t (constants: R1.R, R2.R, C.C, L.L, A.A, A.w)

sought: der(C.u), der(L.i)

Here are the 31 unknowns

R1.p.i, R1.n.i, R1.p.v, R1.n.v, R1.u,
R2.p.i, R2.n.i, R2.p.v, R2.n.v, R2.u,
C.p.i, C.n.i, C.p.v, C.n.v, der(C.u),

der(L.i), L.n.i, L.p.v, L.n.v, L.u,
A.p.i, A.n.i, A.p.v, A.n.v, A.u,
g.i, g.v R1.i R2.i L.i

C.i

ẋ f x t,( )=

ẋ
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Solution method

1. Use the equations that contains the unknowns yo
want to calculate (here:der(C.u), der(L.i))

der(C.u)  = C.p.i/C.C

der(L.p.i) = L.u/L.L

2. Use other equations to calculate the unknowns in
equations from 1.
       C.p.i   = R1.u/R1.R

       R1.u   = R1.p.v - C.u

       R1.p.v  =A.A*sin(A.w* t)

       L.u    = R1.p.v - R2.u

       R2.u   = R2.R*L.p.i

3. Sort the equations in dependency order
  given: C.u, L.p.i, t

          R2.u       =R2.R*L.p.i
          R1.p.v    =A.A*sin(A.w* t)
          L.u         = R1.p.v - R2.u

R1.u       =R1.p.v - C.u
          C.p.i       = R1.u/R1.R
          der(L.p.i) = L.u/L.L
          der(C.u)  = C.p.i/C.C

4. Generate code and solve numerically
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Automated solution method

• Equations are sorted, symbolically simplified, and
translated to efficient C/C++ code

• This method is completely automated and handles te
of thousands of equations efficiently

• Currently primarily for Differential-algebraic equations
Ongoing work for partial differential equations
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Time in Modelica

The behaviour evolves as a function of time.
A predefined variabletime is used:

class VsourceAC “Sin-wave voltage source”
   extends TwoPin;
   parameter Voltage VA = 220 “Amplitude”;

parameter Real f(unit=”Hz”) = 50
                              “Frequency”;
   constant  Real PI=3.141592653589793;
equation
   v = VA*sin(2*PI*f*time);
end VsourceAC;

The constructder(v) means the time derivative ofv.



Modelica 24

ssed
Functions in Modelica

Sometimes there is need for model components expre
in algorithmically

function PolynomialEvaluator
        input Real a[:];
           // array, size defined at run time
        input  Real x;
        output Real y;
      protected
        Real   xpower;
      algorithm
        y := 0;
        xpower := 1;
        for i in 1:size(a, 1) loop
          y := y + a[i]*xpower;
          xpower := xpower*x;
        end for;
      end PolynomialEvaluator;

Functions have input parameters and output results.
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Subtypes in Modelica

According to several type systems by Abadi & Cardelli:

Class A is a subtype of class B iff

• Class A contains all public variables of B

• The types of these variables are subtypes of types o
corresponding variables in B.

Where is subtyping used?

• Initialization of variables: variable A can be initialized
by B

• Redeclarations (discussed later)

Redeclarations

The type of class member can be changed when the cla
inherited.
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Redeclaration example in Modelica

Two classes, Resistor and TempResistor:

class Resistor “Ideal electrical resistor”
   extends TwoPin;
   parameter Real R(unit=”Ohm”) “Resistance”;
 equation
   R*i = v;
end Resistor;

class TempResistor
   extends TwoPin
   parameter Real R, RT, Tref ;
   Real T;
 equation
   v=i*(R+RT*(T-Tref));
end TempResistor

Note thatTempResistor is a subtype ofResistor.
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Redeclaration example (continued.)

There is a class SimpleCircuit:

class SimpleCircuit
    Resistor R1(R=100), R2(R=200), R3(R=300);
 equation
    connect(R1.p, R2.p);
    connect(R1.p, R3.p);
end SimpleCircuit;

The types of variables R1 and R2 can be replaced:

class RefinedSimpleCircuit = SimpleCircuit(
       redeclare TempResistor R1,
       redeclare TempResistor R2);

The result is equivalent to:

class RefinedSimpleCircuit
    TempResistor R1(R=100),
    TempResistor R2(R=200),
    Resistor R3(R=300);
 equation
    connect(R1.p, R2.p);
    connect(R1.p, R3.p);
end RefinedSimpleCircuit
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Comparison of redeclaration with C++
templates

In C++ classes can be defined as below:

template <class TResistor, class TResistor1>
class SimpleCircuit {
  public:
SimpleCircuit(){
             R1.R=100.0;
             R2.R=200.0;

R3.R=300.0; };
TResistor  R1;
TResistor1 R2;
Resistor   R3;
}

and then declared by

SimpleCircuit<TempResistor,TempResistor>

In C++ it is necessary to explicitly specify which two resi
tors are replaced.
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Redeclaration in Java

Assume that:

classTempResistor extendsResistor

and

classRefinedSimpleCircuit extendsSimpleCircuit

then the problem is solved at run-time:

class RefinedSimpleCircuit extends
      SimpleCircuit
{ public
  RefinedSimpleCircuit() {
     R1=new TempResistor();
     R2=new TempResistor();
}}
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Java - usingObject .

Otherwise, the problem is solved by using casting:

class SimpleCircuit
{  public  SimpleCircuit() {
 R1=new Resistor();  ((Resistor)R1).R=100.0;
 R2=new Resistor();  ((Resistor)R2).R=200.0;
 R3=new Resistor();  ((Resistor)R3).R=300.0;};
    Object R1, R2, R3;
    };
};

class RefinedSimpleCircuit extends SimpleCircuit
{ public
  RefinedSimpleCircuit() {
  R1=new TempResistor();
  R2=new TempResistor();
  ((TempResistor)R1).RT=0.1;
  ((TempResistor)R1).TRef=20.0;}
};
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Advanced Modelica Modeling Features

• matrix equations

– for mechanical models, control systems, etc.

• arrays of components and regular connection pattern

– such as a distillation column

• class parameters

– reuse of a model diagram but replacing component models

• discontinuities, events and event synchronization

–  for modeling friction, sampled control systems, etc.

• algorithms and functions

– for procedural style of modeling/design

• units and quantities

– for consistency checks

• graphical annotations

– also icons and model diagrams become portable

• Modelica base library

– standard variable and connector types promotes reuse
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Plans

• The aim is to make Modelica a de-facto standard

• Modelica version 1.0

– Differential Algebraic Equations (DAE)

– Hybrid models

– Published September 1997
(www.dynasim.se/Modelica)

• Modelica version 1.1

– Semantics formally defined

– Standard libraries

– Expected Sept.-Oct 1998

• Modelica version 2

– Support for partial differential equations

– Mathematical modeling of dynamic object creation, etc.

• Planned books

– Modelica language

– Modelica libraries

• Tools, ...



Modelica 33

or

r

ext

ry

m

Conclusion

• Modelica is a new object-oriented design language f
modeling/design of complex systems, usually for the
purpose of simulation

• An international technical committee, currently unde
EuroSim, is standardizing and designing Modelica

• The language has a good chance of becoming the n
generation simulation language

• Modelica is strongly typed and can be compiled to ve
efficient C/C++ code

• Ongoing efforts to generate efficient parallel code fro
Modelica
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	Functions have input parameters and output results.

	Subtypes in Modelica
	According to several type systems by Abadi & Cardelli:
	Class A is a subtype of class B iff
	• Class A contains all public variables of B
	• The types of these variables are subtypes of types of corresponding variables in B.

	Where is subtyping used?
	• Initialization of variables: variable A can be initialized by B
	• Redeclarations (discussed later)

	Redeclarations
	The type of class member can be changed when the class is inherited.


	Redeclaration example in Modelica
	Two classes, Resistor and TempResistor:
	class Resistor “Ideal electrical resistor”
	extends TwoPin;
	parameter Real R(unit=”Ohm”) “Resistance”;
	equation
	R*i = v;
	end Resistor;
	class TempResistor

	extends TwoPin
	parameter Real R, RT, Tref ;
	Real T;
	equation
	v=i*(R+RT*(T-Tref));
	end TempResistor

	Note that TempResistor is a subtype of Resistor.

	Redeclaration example (continued.)
	There is a class SimpleCircuit:
	class SimpleCircuit
	Resistor R1(R=100), R2(R=200), R3(R=300);
	equation
	connect(R1.p, R2.p);
	connect(R1.p, R3.p);
	end SimpleCircuit;

	The types of variables R1 and R2 can be replaced:
	class RefinedSimpleCircuit = SimpleCircuit(
	redeclare TempResistor R1,
	redeclare TempResistor R2);

	The result is equivalent to:
	class RefinedSimpleCircuit
	TempResistor R1(R=100),
	TempResistor R2(R=200),
	Resistor R3(R=300);
	equation
	connect(R1.p, R2.p);
	connect(R1.p, R3.p);
	end RefinedSimpleCircuit


	Comparison of redeclaration with C++ templates
	In C++ classes can be defined as below:
	template <class TResistor, class TResistor1>
	class SimpleCircuit {
	public:
	SimpleCircuit(){
	R1.R=100.0;
	R2.R=200.0;
	R3.R=300.0; };
	TResistor R1;
	TResistor1 R2;
	Resistor R3;
	}

	and then declared by
	SimpleCircuit<TempResistor,TempResistor>

	In C++ it is necessary to explicitly specify which two resistors are replaced.

	Redeclaration in Java
	Assume that:
	class TempResistor extends Resistor
	and
	class RefinedSimpleCircuit extends SimpleCircuit
	then the problem is solved at run-time:
	class RefinedSimpleCircuit extends
	SimpleCircuit
	{ public
	RefinedSimpleCircuit() {
	R1=new TempResistor();
	R2=new TempResistor();
	}}


	Java - using Object.
	Otherwise, the problem is solved by using casting:
	class SimpleCircuit
	{ public SimpleCircuit() {
	R1=new Resistor(); ((Resistor)R1).R=100.0;
	R2=new Resistor(); ((Resistor)R2).R=200.0;
	R3=new Resistor(); ((Resistor)R3).R=300.0;};
	Object R1, R2, R3;
	};
	};
	class RefinedSimpleCircuit extends SimpleCircuit
	{ public
	RefinedSimpleCircuit() {
	R1=new TempResistor();
	R2=new TempResistor();
	((TempResistor)R1).RT=0.1;
	((TempResistor)R1).TRef=20.0;}
	};


	Advanced Modelica Modeling Features
	• matrix equations
	– for mechanical models, control systems, etc.

	• arrays of components and regular connection patterns
	– such as a distillation column

	• class parameters
	– reuse of a model diagram but replacing component models

	• discontinuities, events and event synchronization
	– for modeling friction, sampled control systems, etc.

	• algorithms and functions
	– for procedural style of modeling/design

	• units and quantities
	– for consistency checks

	• graphical annotations
	– also icons and model diagrams become portable

	• Modelica base library
	– standard variable and connector types promotes reuse


	Plans
	• The aim is to make Modelica a de-facto standard
	• Modelica version 1.0
	– Differential Algebraic Equations (DAE)
	– Hybrid models
	– Published September 1997 (www.dynasim.se/Modelica)

	• Modelica version 1.1
	– Semantics formally defined
	– Standard libraries
	– Expected Sept.-Oct 1998

	• Modelica version 2
	– Support for partial differential equations
	– Mathematical modeling of dynamic object creation, etc.

	• Planned books
	– Modelica language
	– Modelica libraries

	• Tools, ...

	Conclusion
	• Modelica is a new object-oriented design language for modeling/design of complex systems, usual...
	• An international technical committee, currently under EuroSim, is standardizing and designing M...
	• The language has a good chance of becoming the next generation simulation language
	• Modelica is strongly typed and can be compiled to very efficient C/C++ code
	• Ongoing efforts to generate efficient parallel code from Modelica


